Biomedical Imaging and Functional Genomics

Elisa Ficarra

Politecnico di Torino, Italy – EPFL Lausanne, Switzerland – DEIS University of Bologna, Italy

Background

Digital Image Processing
Computer Vision
Gene Expression analysis

Techniques for Automated Analysis of DNA molecules in high-resolution microscope images

Development of Automated Algorithms for DNA Molecules Feature Analysis and Extraction

Image Processing techniques \rightarrow to automatically extract that users can see on the images

> Computer Vision → Image processing + Artificial Intelligence techniques to be able to make inferences

Work in Progress ⁽¹⁾ : Gene Expression Analysis

Transcription Factors Identification

through data mining techniques on microarray data and ChIP-Chip data, and image processing and computer vision techniques

Co-expressed Genes identification

through data mining and clustering techniques and statistical analysis

Modeling Gene Regulatory Networks

- defining gene function
- defining biochemical pathways

through network mathematical models design and microarray screening of RNAi knockouts

Goals:

- Drug Development
- Therapeutic treatment

Specific Problems

Noise in the experimental data

- Non observability of mani variables of interest for gene network modeling (data incomplete)
- Biological variability

Mathematical Models

- Boolean Networks
 Probabilistic BN
- Bayesian Networks
 - ♦ Dynamic BN
- Differential Equations

Work in Progress ⁽²⁾ : Clinical Bioimaging and Functional Genomics

Biomedical and molecular imaging

- techniques to extract clinical and functional biological information from tissue or molecule or live cell images (*i.e. diagnosis of a specific subtype* of cancer)
- Correlation with clinical parameters and genetic pathways
- to enhance gene expression analysis or to increase the amount of confidence in the hypothesized gene expression paths

Non small cell lung carcinoma (NSCLC) Project

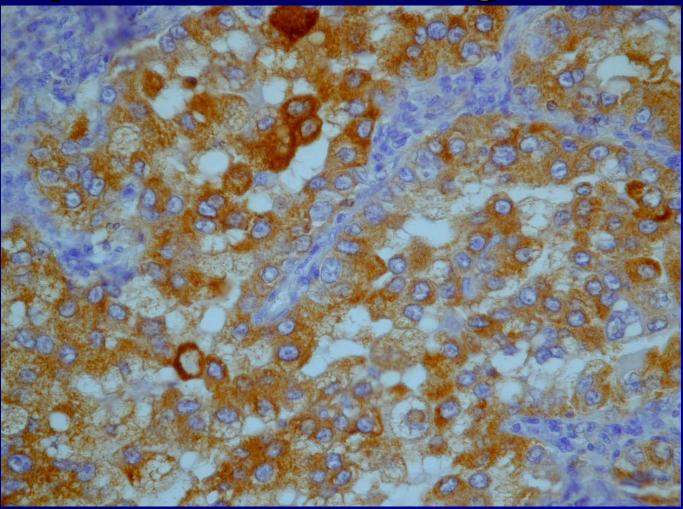
- The EGFR/erb-B family of receptors seems to play an important role for non small cell lung carcinoma (NSCLC) development
- Aim of project → to evaluate the correlation between EGFR genetic alterations, the expression profile of EGFR, of its ligands, and the activation of downstream pathways in order to better define a subgroup of NSCLC able to respond to EGFR kinase inhibitors.

HOW?

Through
Gene Expression Analysis
Immunohistochemical Automated Quantification

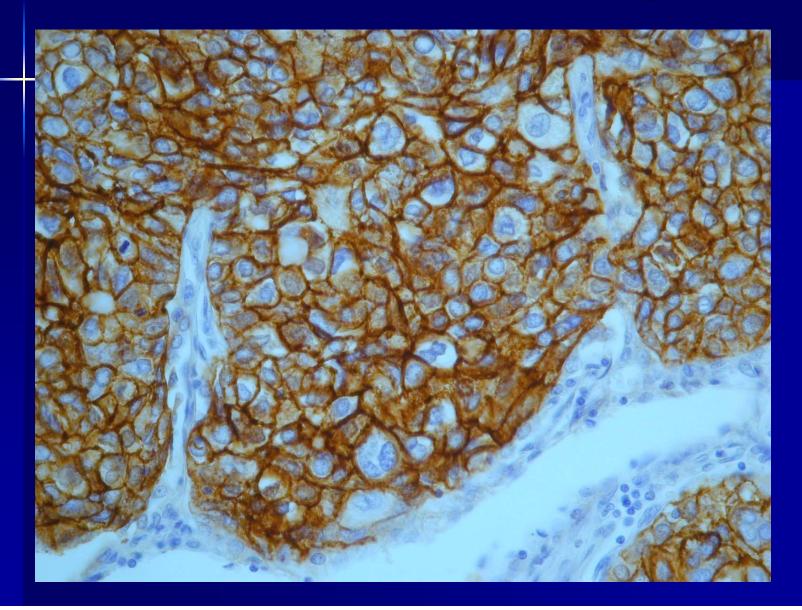
Immunohistochemistry (IHC): characteristics and aim

- To investigate the activation of downstream EGFR/erb-B receptor family pathways
- Marked antibodies to detect anti-genes EGFR, TGF alpha, erb-B


Correlation of staining with absolute protein levels as tool for clinical applications (i.e. diagnosis and prognosis) and therapy improvement

Immunohistochemical Automated Quantification

 Development of techniques for acquiring quantitative and qualitative information from immunostains


 Development of automated image processing methods to standardize IHC analysis

Example of IHC images

EGFR/erb-B receptors positivity (in carcinoma cells) as brown stain Negative carcinoma cells and other cells in the sample as blue stain

Example of IHC images

IHC Quantification Framework

Parameters to extract:
Localization of marker (i.e membrane, cytoplasm, nucleus)
Reaction Intensity
Percentage of (EGF) positivity w.r.t. all carcinoma cells in the sample

IHC Quantification Framework

Steps:

- Differentiation of carcinoma cells w.r.t. non carcinoma cells (individuation of different morphological properties) to quantify the percentage of positivity
- Identification and extraction of marked areas to quantify the reaction intensity and the percentage of positivity
- Differentiation of cell components (i.e. membrane, cytoplasm, nucleus)
 to identify the main location of the reaction

Step 2: Identification and extraction of marked areas

Color Segmentation in RGB space

- Identification of seed points of specified color
- Region growing from these points to points that satisfy conditions
 - Points have to belong to a specified color range (see RGB channels analysis or histogram processing on HSI color space and thresholds definition)
 - Points have to be 8-connected (for each region defined by seed points)

Step 1: Hard Problem

Morphology Variability for same typology of cells

- Difficult to differentiate cells in some cases
- Noise in the images

Step 1 and 3: possible approaches

- Object Segmentation starting from specified points (e.g adaptive T-snakes or region-based segmentation by satisfying connectivity and some defined properties) and
- Regional Description (i.e. segmentation, representation and then description)
- Pattern Recognition: Decision-theoretical approaches (using quantitative descriptors, e.g. shape, orientation etc) or Structural approaches (using qualitative descriptors, e.g. relational)

Both decision-theoretical and structural approaches are based on *learning* from sample patterns

Decision theoretical methods: Matching, Optimum Statistical Classifiers, Neural Networks Structural methods: String Matching, Syntactic Recognition of Strings or Trees

Whole Framework

- Bioimaging as standardized IHC image analysis
- Extraction of quantitative and qualitative parameters for activation of downstream pathways analysis of EGFR/erb-B receptor family
- Validation of results
- Correlation of these parameters with other clinical parameters and gene expression analysis data